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ABSTRACT
The generalized dual series solution to the scattering of an arbitrary plane wave
from an open spherical shell having a circular aperture and enclosing a concentric,
homogeneous dielectric sphere is presented. This solution explicitly exhibits the
correct edge behavior, and it can handle spheres that are electrically small or large
without special considerations. A variety of cross-section results are presented for
the normally incident case. It is shown that effects corresponding to the presence
of the interior cavity dominate all of the scattering data. In particular, the cross-
sections exhibit new resonance features that are due to the cavity-backed nature of
the aperture and depend on the characteristics of the interior sphere. The results
demonstrate that interior information is contained in the exterior scattering data.

PACS number: 41.10.Hv, 03.80.4r



I. INTRODUCTION

Because they describe coupling via apertures into enclosed regions containing a.ddt-
tional dielectric or metallic bodies and scattering from reflector structures having edges.
and nontrivial configurations, the importance of canonical electromagnetic cavity-ba.cked
aperture problems can not be understated. They provide a fundamental means with which
basic aperture coupling and reflector physics can be studied in detail; they can be used to
construct and/or validate approximate models or general engineering analysis and design
“rules of thumb” that can be applied to more general aperfures and scattering objects; and
they aid in the development of improved numerical techniques especially near the edges of
the apertures or reflectors where discontinuities appear and where those methods may en-
counter difficulties. Moreover, accurate canonical solutions of this type provide st.a.nda.rds

to which general purpose numerical code results can be compared.

A number of canonical problems that describe con.xpling through apertures into en-
closed regioﬁs have been solved recently with the generalized dual series (GDS) approach
and have been reported elsewhere[1-5]. In two-dimensions these include the scattering of
E- and H- polarized plane waves from an empty infinite circular cylinder having an infinite
axial slot [1,2] and from one that encloses an infinite concentric [3,4] or off-set impedance
cylinder [5]. These two-dimensional slit cylinder problems have proved to be valuable for
EMP studies. The locations of field hotspots near the 'interior object and the current peaks
induced on an interior wire are being studied as a function of all of the problem parameters.
In three-dimensions the scattering of an arbitrary plane wave from an empty open spheri-
cal shell with a circular aperture has been solved [6,7]. These problems have been studied
extensively to determine the effects on the aperture coupling and scattering of variations
in the polarization, frequency, angle of incidence, aperture size, and interior object charac-
teristics. The GDS solutions are systematic and inherently contain the behavior near the
rim of the aperture required by Meixner’s edge conditions. They can handle open spheres



that arc electrically small or large and arbitrary angles of incidence without additional
special considerations. The t_h:ee-dimensiona.l open spherical shell problems are important
because they involve a finite scatterer for which experimental data can be obtained.[8]

In this paper we extend the open spherical shell solution to the case where it encloses
a concentric, homogeneous dielectric sphere. Because of length considerations, we will
discuss onlj the normally incident case. As will be described below, these results are
readily extended to an incidence angle as described in Ref. 6.

This dual series solutiéns is the first of its kind for a loaded, open sphere preblem.
On the other hand, the closed spherical cavity loaded with a concentric, lossy dielectric
core has been analyzed for microwave fusion studies.[9-12] Initial heating rates of a plasma
core and perturbations of the eigenmodes caused by deformations of the plasma core were
investigated. The closed, loaded cavity problem results were recently extended to aid in
the explanation of the resonance phenomena to be presented below.[13]

It has been found that resonance features corresponding to the presence of the interior
cavity dominate all of the aperture coupling and the scattering results. These include the
currents induced on the exterior scatterer, the fields in the aperture, the energy captured
by the open cavity, and the scattering cross-sections. As will be demonstrated below, the
locations in frequency of these cavity-backed aperture (CBA) resonances and the resultant
current and field patterns at those values can be identified with corresponding closed-cavity

resonance locations and patterns.

II. DESCRIPTION OF THE PROBLEM

A cross-section of the generic problem configuration is shown in Figure 1. A perfectly
conducting, infinitesimally thin, open spherical shell is represented by the surface {r = a,
0 < 0 < 8o} in the spherical coordinate system (r,8,$) erected at the shell’s center. The
negative z-axis of that system passes through the center of the aperture, the Jatter being
defined as {(r,0,¢)|r = aand 8y < § < w}. The interior dielectric sphere has a radius



b and a dielectric constant € = e, €0, where ¢ is the dielectric permittivity of free-space.
Half the angular extent of the aperture is measured by the angle 8,; = 7 — 6p. The unit
vectors (,6, §) are defined in the standard manner in the directions of positively increasing
coordinate values. W’e divide the problem space into three radial subregions defined by

the expressions:

Region I: {(r,0,d)|r > a}
Region II: {(r,0,9)|b<r < a}
Region III: {(r,08,¢)Ir < b}_.

A plane wave

(g::)(f, 8,4) = ~Ege'** (yo cof ginc g) (1)

is normally incident on the open sphere. Throughout this paper, an e~** time dependence
is assumed and suppressed. The incident angle §°*¢ = Qor .

Following standard ana.ly.ses of problems in a sph_erica.lly symmetric geometry, we em-
ploy a Debye potential formalism. In particular, if the radial vector # = r7, the electric

and magnetic fields are expressed in terms of the two Hertzian potentials & 7 and ¥ 7 as

E = —curl(®7) — (iwe) ™! curl curl(¥ 7)

B = +eurl(¥7) - (iwp) ™! curl curl(® 7). (2)

The function @ = Y oo Y ow,n Pmn sinme defines the field TE with respect to r, ¥ =
Y 0 Lonem Umn cosmo the field TM with respect to r. The assumption of normal

incidence reduces these potentials to a single azimuthal mode for both the incident and

the scattered fields:

(5o ()i

na=1 In
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(% )emo ’- > (35 r,0) cons.

n=1 1n

The actual form of the azimuthal modal coeficients of the scattered field, #] and ¥4,

depends upon which region r lies in. Enforcing the electromagnetic boundary conditions:

1. Egt, HSt must be continuous across r = b,
2. E% must be continuous across » = a;

we obtain fields from (1) that are summarized by the expressions:

E, = Eo Z{z a(n+ ) mn 20 51, (0)} sindcos
Eg = ETougl{o’lu Zn(kr) 51a(0) — i 718 Lkr_Z,,’w(.k_r)]' 'u-’ln(o)} cos ¢
Ey = Bo ). {o1a Zallr) 0u(0) =i e 2ol 5100} sing |
(3)
H, = -V Ep Z{z n(n + 1) o1a Z,.(Ic ) %1n(0)} sinOsin ¢
n=l
Hy = -Y, Eg Z{ﬁ,. Zo(kr) T1a(0) — i O1m ["’—'-zl(-’i'ilﬂ ,.(a)} sin ¢
n=1 '
Hy=-Y, E ,,Z:,{""‘ Za(kr) B1a(8) — i1 E‘i;f_"i)]-' (o)} cosd,
where the terms 5m,(8) = m.P,:""(cos 0) /sin@ and Wmn(8) = —0p P ™(cos @), and the

notation, for example, [zj,(z)]', means to take the derivative of the expression in the

brackets with respect to z. The function Z,(kr) is composed of linear combinations of

spherical Bessel, ja(kr); Neumann, n,(kr); and Hankel (of the first kind), hn(kr) functions

depending on the value of r. In particular, for the incident field one has for any r: Z,(kr) =

in(kr) ;nd the coefficients

rine n(n +1)
5
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whereem=1ifm=0a.nd=2ifm7é0a.ndKronecker’sdelta&o,.=1ifn=0and=0if

n # 0. For normal incidence these coefficients explicitiy reduce to the values:

(ﬁi) (@ =0) =" (2n +1) (ﬂ)

in
| | (4)
(:i!;’:;)(o‘"‘ =x)=—(-i)*(2n +1) ci) :
With the notation
e = in(B)RD jal KB = jn(k'D)kbn(KD)
" j,.(k'b)[kb h,.(kb)]' - b,.(lcb)[k'b j,.(k'b)]'
(5a)
_ da(kB)(K'n(KB)) — v jn(K'B) (kb ju (kD)
fIn = 5. (Kb){(kb ha(RD)]' — Ba(Rb)[k'Djn(k'D)
£ (kr) = jn(kr) + 74 Ba(kr)
' (5b)
€h(kr) = jn(kr) + Tin Ba(kT)
e L] — _’_ jﬂ(k’r)
GlET) = (kb) TO) R (kD)) — Ba(kD)[K'b jn (D)
- (5¢)
1.\ — L n(K'r)
¢(k'7) = () BB BlR) — BalRO)FEJn(FD)
the total field expressions then have the form
r1n\ g ey < (A EECR8) ot €5(kv) e ion
(7o) 2o (o [kad:_(ka)]') i)+ (7 o) n Region 1(6)



- _( [Ain ba(ka) + oine] g3(kr)
(rl ) Zahr) = ({B,,. [ka ba(ka)]' + r;',.“}ek(kr))

in

in Region II (6b)

710) 7 () (. PAin Ba(ka) + 082 C3(¥) —_y ]
(52) 24071 = (e haniay « i cken) @ Region III. (6¢)

in

It is readily verified by inspection that the resulting electric fields are continuous across
r =:Ia and because £5*(kb) = (5%(kb), the elec.tric and magnetic fields are continuous
across r = b. We now proceed as in Ref. 6. |
The dual series equations are obtained by enforcing the electromagnetic boundary
equa.tioﬁs:
E%t =0 on the open metallic shell;
H}% is continuous over the circular aperture.

With the field expressions (5) and the terms

fin = o1y’ €3 (ka)

. (7)
g1n = Tin éa(ka),
one obtains
ika ) {A1n £3(ka)hn(ka) — fin} Pyt = . (8a)
n=1
sind0 Y {Bin [kath(ka)|'[ka ba(ka)] — g1a} P!~ (0< 8 < o)
n=xl
i A1n P71 = —ikasin 65y f: BinP7}  (Bp<8<m) (8b)
n=] n=l
ikasin 089 ) _{A1n£n(ka)ba(ka) ~ fia} Pt = (9a)
=]
Y {Bia[ka€d(ka)]'[ka ba(ka)] — g1} P (0< 6 < bp)
n=]1
sin 66y f: Aln P;l = —ikai Bia P;l (o< <) . (9b)

n=1 n=]1
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These coupled dual series equations differ from those obtained in Ref. 6 only through
the presence of the terms proportional to 75 and nt. Those terms have the same large n

behavior as the “original” ones in Ref. 6. In particular, we can define the functions

x? = [ika(2n + 1) £(ka) ha(ka)] — 1 " (10a)

xg=_{1+ dika - [ka £2(ka)] [ka ba(ka)]'} (108) .

which, as n becomes large, behave as limp_.o x: ~ O(n~?) and limp—qo i,'f ~ O(n~?).
Consequently, we can use the normal incidence results of Ref. 6 immediately to obtain a
coupled system of infinite lit;ear equations for the unknown modal coefficients. With the

truncation procedure introduced in Ref. 6, this system is reduced to a finite, numerically

tractable one of the form_

+Z( AT 0 2ke S Tiufie (11)

(—21k¢ L [)ﬂl +
/ n=]1

Ay
&+1/2

(—L3)B: + By + z(x;’.’ T .) Bin = —2ika Z The o3 7 (119)

n=l
~2ika (1~ Aol + (~ika Adg) e + 3 (2 ASo) s rke Y Mafw (11
n=1 n=1

(~(0 - M)A + [-4(ka)? Ablas + 37 (28 Abs) Brn = —ika Z Mot (1)

n=]

where the inversion coeflicients are

e _ 1 rsin(n—2)  sin(n+2+1)4
A"“_;[ n-—1{ - n+l+1 °] (12a)



h o lprsin(n~£)8p sin(n+£+1)6 -
A"l—w[ n—~{ n+l+1 ] (126)
so that
e,h e,k eh seh
I, = St S - (120)
» A" -
m .
e,k )
Lh = -t | | (120
AOO

The constants, a; and §;, are introduced in the solution process to permit a pseudo-
decoupling [6,14] of the TE and the TM dual series equations systems and to guarantee
satisfaction of Meixner’s edée conditions. This system can be solved for the modal coeffi- |
cients Aj, and By, with £ =1,2,..., N, for instance, by Gauss elim-ina.tion. Any additional
coefficients up to some value L can then be generated recursively from Eqs.(11) by setting
£=N+1,N+2,...,L. Convergence is obtained typically with a value of N = 10 ka so
that (ka/N)? is small. The following results are derived from Eqs. (11) in this manner.
Nonnormal incidence cases are treated in a similar fashion by solving systems analogous
to Eqs. 11 for each azimuthal moede and then incorporating the requisite azimuthal mode

sums in the desired observables. The associated inversion coefficients analogous to 1";’:‘

and L;‘th are derived in Ref. 6.

III. RESULTS
Any electromagnetic quantity can be calculated once the modal coefficients are deter-
mined. In our analysis of the coupling of the plane wave to the dielectrically loaded open
sphere, we have stressed the scattering cross-sections (bistatic, radar, forward, and total
differential) of this system and the total em.;rgy captured by it. The associated formulas

for these quantities will be given below before the discussion of the numerical results.



IITa. REQUISITE FORMULAE

The scattering cross-sections all deal with the far-field behavior of the scattered fields.

In particular, the bistatic cross-section is given by the expression:

. gine giney __ IE (7'!0 ¢)'2
oBs (05¢10‘ & ) hm 4rr? |E"“(1‘,0 ¢)|2

{IZ( =1)*[ o, 51a(0) + ,,,w,,,(a)]l cos? ¢

n=l

+|Z( 1)"["1nw1n(0)+r1,,vln(0)]| sin ¢}

n=l

which for = #'* + x and ¢ = 0° gives the radar cross-section:

oD
. . . : T . 2
orcs = ops (07 +,0; 6, 6™) = 5 l Y ol + 7l l

which for # = 6™ and ¢ = 0° gives the forward cross-section:

OFCS = OBS (oim:, 0; ainc’ ¢tnc) = %4 Z (_i)n [c{n - flIn] ’ ’

n=-—a0

where from (6a) the scattered field coefficients for » > a are defined as

o1y = A1n £5(ka) + 18 o

T3y = Bin [ka€h(ka)]' + 7t rine.

These cross-sections indicate the amount of field scattered in particular directions.

(13)

(14)

(15)

(16a)

(16b)

To -

make a connection of these formulas with the standard ones for the closed sphere, notice
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that in the limit §p — m, where the shell is closed, the empty sphere solution coefficients

reduce to the forms(6]

L i@n+l) an
Aunlbo = P) === gy jnlka)
i*(2rn+1) bn

Pinl® =80 = Rabatray Y ey

Consequently, the standard closed sphere radar cross-section result is, for instance, recov-

ered:

iyt = 5[ S22k 1) (o) o an

n=1

In contrast, the total differential or scattering cross-section:

%fRn[(E. x H;) -1‘-] r? sin 0 dfd¢

r—co ' 1Ys |Eof?
o0 > 2 > |2
_ 2 S on P+l .
B 3; 2n +1 (18)

is representative of the energy scattered into the entire 4x-sphere.
The total energy captured by the open scattering object is an important measure of
the amount of coupling the incident field experiences through the aperture into the object’s

interior. The total energy captured in the dielectrically loaded open sphere is given by the

complicated expression

1 L) ar - -

=3 /: /o j; [|E"’|’+ |zoam|’] r? sin 0 drdfdg
1 T p27 - - _
+= /' / / [|E"|’ +|on"|=] r? sin 8 drdfd¢
2y Jo Jo



= 2B B i(?n + fugp? [jf,(k'b) — jn-1(k'0) j,H.l(k'b)]

n=1

+2E} 3 (n ) [l { o ) -s s ()| —B D) —nr (D k1)
n=1

a1 {6%lin(ka)a(ka) ~ 3 {int1(ka)2n-1(ka) + jos(ka)mns1(ka)]}
~ b3[jn(kb)nn(kb) ~ %{j,.ﬂ(kb)n,.-l(kb) +j,._1(kb)n,.+1(kb)]}
+ufl(? {a*(nd(ka) ~ Bn-1(ka)Bns1(ka)] — B[ad(kE) ~ Ba-s(kb)mars(R)]}]  (19)

where the following notation has been introduced

¢ oI

I
il = '“"Zzn T (20a)
122 (1 + 207 + [mel?) + Imia 12 (1 + 20 + Ial?
II2 2 : 1112 2 £
o - el
12 2 | 1112 2
|2 = lot| I'I(-Ln-: l%;l | I | (20d)
and from Eqs. (6b) and (6c) the coeflicients
0§l = Ay ba(ka) + o1 (21a)
78] = By, [ka by(ka)]' + i (21b)
¢ S _l_ Aln bn(kd) + di::
Tin' = G TR ba(RD)] — ba(k8) PO (PO (21¢)
¢ 1 Bh., [kd b,.(ka)]' + 1’1'; ' (214)

1% = 2B €rjn(K'D)[kb b (KB)] — by (KD)[K'D jn(K'B)]'
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The results for the total energy will be presented as a figure of merit defined by the ratio:
Utot/Uine, of the total field energy in the dielectrically loaded open sphere to the incident
field energy in the corresponding dielectrically loaded mathematical sphere with r < a:

Uie = 208§ (20 -+ Va2 {8 [2KD) = fncsl¥Shinsa ')
n=1

+a [A(ka) ~ e (kadinea(ka)] = B [A(68) ~ inea(blia(RB)] ) (220)

where the coefficients

1

:u:lz - l lnI | 1n . (225)

[u (2n +1)2

IIIb. NUMERICAL RESULTS

The dominance of the resonance features, corresponding to the presence of the interior
cavity, in all of the aperture coupling and scattering results is first illu.%tra.ted in Fig. 2.
Included are the radar (Fig. 2a) and forward (Fig. 2b) cross-sections normalized to wa?,
the aperture field Ej(a,,0) (Fig. 2c), and the energy density ratio Usp/Uinc ( Fig. 2d)
for a unit amplitude plane wave incident at § = 0° upon an open sphere with 4,, = 10°
and radius @ enclosing a dielectric sphere of radius 4 = 0.3a and relative permittivity
¢, = 3.0. The peaks of the anti-resonance features in the radar cross-section occur at ka =
2.5825, 3.822, 4.271, 4.939, and 5.326, and correspond to the T'My,, T M, TEy;, TMy,,
and TMj; modes. The corresponding valleys occur at ka = 2.5827, 3.823, 4.272, 4.945,
and 5.328. These mode assignments were made By tracking the resonance locations from
the corresponding closed sphere to the present épen spheré cases.[13]

As discussed in Ref.15, the open sphere results are closely correlated with the closed
sphere results at lower ka values.except for the presence of the- CBA resonance features.
As ka increases (wavelength decreases) so that the incident wave can begin to sense the
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presence of the aperture and the interior cavity, the deviation of the open sphere from the
closed sphere results increases. This effect is clearly perceived in Fig. 2c where for the
closed sphere case the scattered field wquld l-1a.ve a unit amplitude at (a,=,0). The peaks
in the resonance locations in Fig. 2d occur at ka = 2.5825, 3.822, 4.271, 4.942, and 5.327.
These are slightly lower in ka than the corresponding closed cavity values: 2.5854, 3.833,
4.275, 4.966, and 5.332. This effect is due to the detuning of the cavity by the aperture.

The difference in locations of the peaks of #rcs and Um /Uine is characteristic of a
CBA configuration. In particular, consider Fig. 3 where the T Mj; resonance region of
Figs. 2a and 2d are superimposed. As discussed in Ref. 15, the resonance peaks are
indicative of a reradiation phenomenon that is associated with the cavity-backed nature
of the aperture. As indicated by Fig. 3, the energy contained within the open spherical
shell dramatically increases at a CBA resonance. Concurrently, the currents induced on
the sphere a.nd (as a consequenc;) the scattered fields experience a w-phase shift as ka
passe-s through one of these CBA resonances. Thus a scattered field, whose amplitude is
enhanced by the energy resonantly captured .in the cavity, is created that at different look
angles either constructively or destructively interferes with the incident field. As the cavity
begins to capture more energy, the radar return increases; while just after resonance the
radar return is dramatically smaller and the captured energy begins to decrease. The radar
returns then approach their closed sphere values as the stored energy decreases further.

This results in the distinctive anti-resonance features present in the radar cross-section.

These resonance features are also found in the bistatic cross-sections at the same rela-
tive positions for all look angles. This is demonstrated in Fig. 4 where the E-plane bistatic
cross-section of the case in Fig. 2 is given for the look-angles § = 180°, 135°, 90° , and
45° as functions of ka. As one might expect, the shapes and sizes of the cross-sections as
well as the individual resonance peaks vary with the angle of incidence and the bistatic
look angles. This behavior is further ¢videnced in Fig. 5 where the E-plane bistatic cross-
sections is given as a function of the bistatic angle 8 for ka = 3.8170 (Fig. 5a), 3.8220 ( Fig.

14



5b), 3.8230 ( Fig. 5c), and 3.8280 ( Fig. 5d). Figs. 5b and 5c correspond, respectively, to
the locations very near the peak and the minimum of the associated CBA anti-resonance
feature present in Fig. 2a. Compa.ring_Figs. 5a-5d one finds that the enhanced response
in the back-scattered direction just before the peak of the resonance occurs at the expense
of the signals scattered into the other look angles, particularly in the broadside direction.
Similarly, the broadside response is enhanced at the expense of the back-scattered signal
just past the anti-resonance minimum.

The fact that the resonance features are very narrow in Fig. 2 is indicative of the
extremely high Q nature of the cavity. Increasing the aperture size broadens i:hcm, and
their locations are translated to lower ka values corresponding to an increased detuning of
the cavity. This is illustrated in Fig. 6 where the total differential cross-sections for a unit
amplitude plane wave with §*< = (° is incident on open spheres of radius a with aperture
angles 8,, = 10 ° ( Fig. 6a), 15 ° (Fig. 6b), 20 ° (Fig. 6c), and 30 ° (Fig. 6d), enclosing a
dielectric sphere of radius b = 0.3a and relative permittivity ¢, = 3.0. The corresponding
radar cross-sections are given in Figs. 7Ta-7d. The movement of the RCS peaks and valleys
are readily traced as the aperture size increases.

The locations of the CBA resonances are also dependent on the characteristics of the
interior load. This is demonstrated in Figs. 8 and 10. In Fig. 8 a unit amplitude plane
wave with "¢ = 0° is incident on open spheres.each with radius a and an aperture
angle 85, = 10 ° and enclosing dielectric spheres of relative permittivity ¢, = 3.0 and radii
b = 0.1a (Fig. 8a), b = 0.3a ( Fig. 8b), b = 0.5a ( Fig. 8¢), b = 0.8a ( Fig. 8d). In Fig. 9
a unit amplitude plane wave with §"¢ = 0° is incident on open spheres each with a radius
a and an aperture angle 6,, = 10 ° and enclosing dielectric spheres of radii b = 0.3a and
relative permittivities ¢, = 1.0( Fig. 9a), ¢, = 3.0 ( Fig. 9b), and ¢, = 10.0 ( Fig. 9¢).

As observed in Figs. 8 and 9, there are clear distinctions between all of the cases
depending on the properties of the interior dielectric sphere. Some of the resonance loca-
tions are nearly coincident while others are not. This depends intimately on the particular

15



modal pattern that is established in the interior of the cavity. If the mode “interacts”
with the interior object, large shifts in the positions of the resonance features may be
produced. Comparing the empty and the. loaded cavity cases, one finds that as the size of
the interior load is increased, very large translations of particular CBA resonance locations
occur. As shown, one may observe the sequence in which resonances appear to be altered
or even a disappeata.n'ce of some or the appearance of additional resonances in a fixed
ka interval. As the relative permittivity of the interior dielectric sphere is increased, the
number of resonances found at lower ka values is dramatically increased. Of course, the
number of available cavity modes (hence, CBA resonance features) becomes quite large as

ka (frequency) increases.

This behavior of the resonahces is explained by analyzing the migration of their loca-
tions in the closed cavity case[13] and is illustrated in Figs. 10 and 11. The locations of the
resonances are tracked for the corresponding closed metal exterior ~ ¢ = 3.0 interior di-
electric sphere case of Fiig. 8 as a function of ka and the ratio b/a. As these figures indicate,
there is a large variety of structures present in the mode spectrum for the closed cavity.
This accounts for the different number of resonances in Figs. 8a-8d for the cavity-backed
aperture case and for the difference in their locations. The combination of knowing the
location of the closed structure resonances and their anticipated presence in the exterior

scattering data has strong implications towards a potential object identification system

and is currently being pursued.

IV. DISCUSSION

Parameter studies of the generalized dual series solutions of several cavity-backed aper-
ture canonical problems are enhancing our understanding of the aperture coupling and
scattering processes. As shown here for the dielectrically loaded open sphere, the pres-.
ence of the resonance features in the scattering cross-sections are extremely interesting.
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The cross-section resonances indicate that for cavity-backed apertures there is interior in-
formation contained in the ezterior scattering dat-a. The dependence of the location of
these peaks on the interior structure and their presence at all look angles may have very
important ramifications for diagﬁostic and object identification applications.

The anti-resonance peaks in the empty open spherical shell and open cylinder radar
cross-sections have actually been observed experimentally [9,10]. Nonetheless, for a lack
of theoretical proof of their existence, they have been generally attributed to errors in:
the measurement apparatus.[10] The current analysis is but one attempt to overcome this
situation and to make applied physicists as well as engineers aware of the new richness in

studying cavity-backed aperture configurations.
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LIST OF FIGURES

1. The generic configuration of the scattering of a plane wave from a cavity-backed
aperture with an interior dielectric load is depicted.

2. Interior information is present in all of the exterior scattering data. This is demon-
strated with ka scans of the (a) radar cross-section, (b) forward cross-section, (c) mag-
nitude of Eg at the center of the aperture, and (d) the energy density. ratio Uit/ Uinc
for a plane wave normally incident into a 10° aperture of an open spherical shell of
radius a enclosing a concentric dielectric of radius b = 0.3a and relative permittivity
& = 3.0. | : '

3. A superimposed, enhanced rendering of the T'M>; resonance regions of Figs. 2a and
2d elucidates the reradiation behavior of the cavity-backed aperture system.

4. The CBA resonances are present at all bistatic look-angles. This is illustrated with
the E-plane bistatic cross-section asa function of ka for a plane wave normally incident
into a 10° aperture of an open sphericil shell of radius a enclosing a concentric ¢, = 3.0
dielectric sphere of radius b = 0.3a. The observation angle § = (a) 180.0°, (b) 135.0°,
(c) 90.0° , and (d) 45.0° .

5. More complete views of the bistatic cross-section as a function of the observation angle
0 are given for the T M3; resonance region of Fig. 4. The ka values are (a) 3.8170, (b)
3.8220, (c) 3.8230, and (d) 3.8280.

6. As the aperture size increases, the cavity becomes more detuned and the resonance
features broaden and shift to lower ka. This is illustrated with the total differential
cross-sections for a plane wave normally incident into open spherical shells of radius a
with (a) 10°, (b) 15°, (c) 20°, and 30° apertures and enclosing a concentric ¢, = 3.0
dielectric sphere of radius b = 0.3a.

7. The dual series solution allows one to track the movement of the CBA resonances as
the aperture size increases. This is illustrated with the radar cross-sections for a plane
wave, noMy it;cident into open spherical shells of radius e with (a) 10°, (b) 15°, (¢)
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10.

11.

20°, and 30° apertures and enclosing a concentric ¢, = 3.0 dielectric sphere of radius
b =0.3a.

Interior information is contained in the exterior scattering data. This is shown with
the radar cross-sections for a plane wave normally incident into open spherical shells
of radius ¢ with a 10°, aperture and enclosing concentric ¢, = 3.0 dielectric spheres
with radii (a) b = 0.1a, (b) b = 0.3a, (¢) b = 0.5a, and b = 0.8a.

The preser'xce of interior information in the exterior scattering data is also illustrated
with the radar cross-sections for a plane wave normally incident into open spherical
shells of radius a with a 10°, aperture and enclosing concenﬁic dielectric si:heres with
radius b = 0.3a and relative permittivities (a) ¢, = 1.0, (b) ¢, = 3.0, and (c)e, = 10.0.
The behavior of the CBA resonance locations can be predicted by studying the migra-
tion of the eigenvalues in the corresponding closed exterior sphere cases. A composite
of the trajectories of several TE eigenvalues is given for a spherical cavity of radius a
internally loaded with a concentric dielectric sphere of radius b and relative permit.tivity
¢, = 3.0 as the ratio b/a increases versus ka.

A composite of the corresponding trajectories of several TM eigenvalues is given for
a spherical cavity of radius a internally loaded with a concentric dielectric sphere of

radius b and relative permittivity ¢, = 3.0 as the ratio b/a increases versus ka.
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